首页 > 自考本科 > 自考怎么学线性代数知识

自考怎么学线性代数知识

发布时间:

自考怎么学线性代数知识

经济学中的线性代数主要学习行列式、矩阵、线性方程组、向量空间与线性变换、特征值和特征向量、矩阵的对角化,二次型及应用问题等内容。线性代数是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中

不需要什么知识,线性代数基本上“自成体系”,想要学习的话,直接买一本线性代数的书就可以了。所有线性代数教材,都是从线性代数最基本最基本的内容讲起的。

国内教材一开始从行列式入手,艰涩难读,最好看国外教材

线性代数自考知识点

多做习题。采纳我的吧。。

: 我是看了前面三章就去考的,后面基本没看,幸好出的题目都是集中在这三章,我才得以通过考试,所以个人觉得前三章必须要看好,这个在高等数学里还得用到...

多做几套自考的历年真题,然后还有熟记背一些数学公式。这样的话通过就会更加有把握些。

《建筑结构实验》《工程经济学》《结构力学》《计算机程序设计》《英语(二)》《线性代数》《工程地质土力学》《建筑设备》《混凝土结构设计》《建筑经济企业管理》《物理工》《概率论》《流体力学》《马克思经济学》《毛概》

自考线性代数知识点

个人认为这两门挺好学的,前提是有中学数学基础。

这两门课程的应用性都很强,在计算机和电子领域都有应用,推荐先学线性代数,因为概率论与数理统计会有少量线性代数的内容(理论证明部分),它们不是孤立的。由此可见线性代数的重要性。

自考的线性代数和概率论(经管类)技巧

线性代数推荐武汉大学的那本教材,讲解通俗易懂,而且每章后面都有相应的实际背景应用例子,学起来难度不大。线性代数主要是抽象,要反复多看书多做习题。

概率论与数理统计,推荐茆诗松的那本教材例子很多很丰富,不知道题主有没有一些微积分基础,没有的话自学估计比较呛,但也不是不行。

因为概率论会涉及一元和多元微积分计算等等内容,而数理统计是以概率论为基础,所以相应理论证明都涉及概率论知识,不过从总体上,概率论与数理统计只要抓住些核心的概念就行。总之,如果仅仅是自学考试过关的话,机会很大。

不难,都是书的基础题。只要书上的课后习题,你都会做了。公式背下来了,60分没问题,如果想在多打一些,还是要多题目才可以。

全国2010年4月高等教育自学考试线性代数(经管类)试题课程代码:04184一、单项选择题(本大题共20小题,每小题1分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。1.已知2阶行列式 =m , =n ,则 =( )A.m-n B.n-mC.m+n D.-(m+n)2.设A , B , C均为n阶方阵,AB=BA,AC=CA,则ABC=( )A.ACB B.CABC.CBA D.BCA3.设A为3阶方阵,B为4阶方阵,且行列式|A|=1,|B|=-2,则行列式||B|A|之值为( )A.-8 B.-2C.2 D.84.已知A= ,B= ,P= ,Q= ,则B=( )A.PA B.APC.QA D.AQ5.已知A是一个3×4矩阵,下列命题中正确的是( )A.若矩阵A中所有3阶子式都为0,则秩(A)=2 B.若A中存在2阶子式不为0,则秩(A)=2C.若秩(A)=2,则A中所有3阶子式都为0D.若秩(A)=2,则A中所有2阶子式都不为06.下列命题中错误的是( )A.只含有一个零向量的向量组线性相关 B.由3个2维向量组成的向量组线性相关C.由一个非零向量组成的向量组线性相关 D.两个成比例的向量组成的向量组线性相关7.已知向量组α1,α2,α3线性无关,α1,α2,α3,β线性相关,则( )A.α1必能由α2,α3,β线性表出 B.α2必能由α1,α3,β线性表出C.α3必能由α1,α2,β线性表出 D.β必能由α1,α2,α3线性表出8.设A为m×n矩阵,m≠n,则齐次线性方程组Ax=0只有零解的充分必要条件是A的秩( )A.小于m B.等于mC.小于n D.等于n 9.设A为可逆矩阵,则与A必有相同特征值的矩阵为( )A.AT B.A2C.A-1 D.A*10.二次型f(x1,x2,x3)= 的正惯性指数为( )A.0 B.1C.2 D.3二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。错填、不填均无分。11.行列式 的值为_________________________.12.设矩阵A= ,B= ,则ATB=____________________________.13.设4维向量 (3,-1,0,2)T,β=(3,1,-1,4)T,若向量γ满足2 γ=3β,则γ=__________.14.设A为n阶可逆矩阵,且|A|= ,则|A-1|=___________________________.15.设A为n阶矩阵,B为n阶非零矩阵,若B的每一个列向量都是齐次线性方程组Ax=0的解,则|A|=__________________.16.齐次线性方程组 的基础解系所含解向量的个数为________________. 17.设n阶可逆矩阵A的一个特征值是-3,则矩阵 必有一个特征值为_____________.18.设矩阵A= 的特征值为4,1,-2,则数x=________________________.19.已知A= 是正交矩阵,则a+b=_______________________________。20.二次型f(x1, x2, x3)=-4x1x2+2x1x3+6x2x3的矩阵是_______________________________。三、计算题(本大题共6小题,每小题9分,共54分)21.计算行列式D= 的值。22.已知矩阵B=(2,1,3),C=(1,2,3),求(1)A=BTC;(2)A2。23.设向量组 求向量组的秩及一个极大线性无关组,并用该极大线性无关组表示向量组中的其余向量。24.已知矩阵A= ,B= .(1)求A-1;(2)解矩阵方程AX=B。25.问a为何值时,线性方程组 有惟一解?有无穷多解?并在有解时求出其解(在有无穷多解时,要求用一个特解和导出组的基础解系表示全部解)。26.设矩阵A= 的三个特征值分别为1,2,5,求正的常数a的值及可逆矩阵P,使P-1AP= 。四、证明题(本题6分)27.设A,B,A+B均为n阶正交矩阵,证明(A+B)-1=A-1+B-1。

会计自考的线性代数不难啊。经济学中的线性代数主要学习行列式、矩阵、线性方程组、向量空间与线性变换、特征值和特征向量、矩阵的对角化,二次型及应用问题等内容。线性代数是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。

自学考试线性代数知识点

建议在网上找找相关视频,数学还是听讲解的比较易懂,也可以去大学里听几节课

不管哪次考试,重点都一定是矩阵和转换,你看看大纲的要求就知道了.

楼主,你好。 我是数学专业的,深知很多人对线性代数的困惑。数学学习不能光看不做题。特别是线性代数,其中的行列式必须是有大量习题才能提高成绩的,。 学习数学,首先你要把书上的定理和定义看明白,把书上的例题都做一做,争取全部搞懂。其次你要增加一些课外练习,总结每一种方法。做题要有效率,不要题海战术,做的题目,只要搞懂,然后知道什么类型的题目都是用这样的方法,下次遇到,就节省了大量时间。 最后,楼主不要认为自己数学基础差,就对学好线代失去了信心,过去数学差,那只是过去,现在你和别人又都在同一起跑线上,就看谁努力了,行列式的计算大概就六七种方法,楼主找个资料书把他们总结一下吧,见到行列式的计算,就用这些方法套入,总有一个适合该题目的。 数学权威专家倾情为你解答,欢迎前来求助。 祝楼主学习越来越顺利,。亲,满意请采纳,谢谢,谢谢!

确实不好入门,建议先回忆复习一下以前学过的二元一次方程组的解法及三元一次方程组的解法,同时结合着行列式的化简,先把这个学习透了,就入门了。

线性代数自考知识点归纳

数学公式LaTeX公式 线性代数是代数学的一个分支,主要处理线性关系问题。线性关系意即数学对象之间的关系是以一次形式来表达的。例如,在解析几何里,平面上直线的方程是二元一次方程;空间平面的方程是三元一次方程,而空间直线视为两个平面相交,由两个三元一次方程所组成的方程组来表示。含有 n个未知量的一次方程称为线性方程。变于关量是一次的函数称为线性函数。线性关系问题简称线性问题。解线性方程组的问题是最简单的线性问题。 线性(linear)指量与量之间按比例、成直线的关系,在数学上可以理解为一阶导数为常数的函数 非线性(non-linear)则指不按比例、不成直线的关系,一阶导数不为常数。 行列式非零[图片上传失败...(image-954f75-1560909100556)] 矩阵可逆[图片上传失败...(image-93246c-1560909100555)] 方阵满秩[图片上传失败...(image-53ff6-1560909100556)] 向量组满秩(向量个数等于维数)。 矩阵的行列式,determinate(简称det),是基于矩阵所包含的行列数据计算得到的一个标量。是为求解线性方程组而引入的。 计算方式:对角线法则 计算方式:对角线法则 性质1 行列式与它的转置行列式相等 注:行列式中行与列具有同等的地位,行列式的性质凡是对行成立的对列也同样成立. 性质2 互换行列式的两行(列),行列式变号 推论 如果行列式有两行(列)完全相同,则此行列式为零 性质3 行列式的某一行(列)中所有的元素都乘以同一个倍数k,等于用数k乘以此行列式. 推论 行列式的某一行(列)中所有元素的公因子可以提到行列式符号的外面. 性质4 行列式中如果有两行(列)元素成比例,则此行列式为零. 性质5 若行列式的某一列(行)的元素都是两数之和,则等于对应的两个行列式之和. 性质6 把行列式的某一列(行)的各元素乘以同一个倍数然后加到另一列(行)对应的元素上去,行列式不变. 1)利用定义 2)利用性质把行列式化为上三角形行列式,从而算得行列式的值 定理中包含着三个结论: 1)方程组有解;(解的存在性) 2)解是唯一的;(解的唯一性) 3)解可以由公式(2)给出. 定理4 如果线性方程组(1)的系数行列式不等于零,则该线性方程组一定有解,而且解是唯一的 . 定理4′ 如果线性方程组无解或有两个不同的解,则它的系数行列式必为零. 齐次线性方程组的相关定理 定理5 如果齐次线性方程组的系数行列式D不等于0,则齐次线性方程组只有零解,没有非零解. 定理5′ 如果齐次线性方程组有非零解,则它的系数行列式必为零. 1. 用克拉默法则解线性方程组的两个条件 2. 克拉默法则的意义主要在于建立了线性方程组的解和已知的系数以及常数项之间的关系.它主要适用于理论推导. 本节主要考虑如何用低阶行列式来表示高阶行列式. 行列式与矩阵加法的比较: 反对称矩阵(skew symmetric matrix) 分块矩阵不仅形式上进行转置,而且每一个子块也进行转置.

本文目录 1、线性系统Linear System 2、Vectors、Matrices 2.1 向量Vectors 2.2 矩阵Matrix 2.3 矩阵与向量相乘 3、线性方程组有解么? 3.1 线性方程组 3.2 线性组合Linear Combination 3.3 张成的空间Span 4、线性方程组有多少个解 4.1 线性相关和线性无关 4.2 秩Rank 5、求解线性方程组 5.1 初等行变换 5.2 简化行阶梯形式Reduced Row Echelon Form 5.3 满秩 6、矩阵乘法 6.1 矩阵乘法的含义 6.2 矩阵乘法的性质 6.3 分块矩阵乘法 7、逆矩阵 7.1 什么是矩阵的逆 7.2 初等矩阵 7.3 什么矩阵是可逆的? 7.4 求解一个矩阵的逆 8、行列式 8.1 什么是行列式? 8.2 行列式的性质 8.3 行列式的计算 9、子空间 9.1 子空间 9.2 零空间 9.3 列空间和行空间 10、基Basis 10.1 什么是基Basis 10.2 基的特性 10.3 判断一个集合是否为基 10.4 三种空间的基和维度 11、坐标系 11.1 使用基表示向量 11.2 直角坐标系和其他坐标系的转换 11.3 坐标系与线性方程 12、特征值和特征向量 12.1 什么是特征值和特征向量 12.2 如何计算特征向量 12.3 检查一个标量是否为特征值 12.4 计算特征值 12.5 正定矩阵&半正定矩阵 13、对角化 13.1 可对角化 13.2 可对角化的性质 14、正交 14.1 范数和距离 14.2 点积和正交 14.3 正交补 14.4 正交投影 14.5 如何做正交投影 14.6 正交投影的应用-求解线性回归 14.7 正交基 14.8 正交矩阵 14.9 对称矩阵 15、奇异值分解 15.1 什么是奇异值分解? 1、线性系统Linear System 一个线性系统满足两个条件:Persevering Multiplication和Persevering Addition。 Persevering Multiplication Persevering Addition 多元线性方程组是一个线性系统 。 2、Vectors、Matrices 2.1 向量Vectors 向量是一堆数的集合,分为列向量和行向量,本文中,向量默认是列向量,行向量用其转置表示。 向量与标量相乘 ,每一维都与该标量相乘: 向量相加 ,使用平行四边形法则: 零向量 :所有维度的值都为0: 标准向量 :一个维度是1,其余维度是0: 向量集 :可以包含有限个或无限个向量: Rn : 所有的n维向量组成的向量集合 2.2 矩阵Matrix 矩阵是一组向量: 如果矩阵有m行和n列,我们就说矩阵的大小为m*n,如果m=n,我们称为方阵(square matrix)。 矩阵的元素下标表示,先行后列: 矩阵与标量相乘 :每一个元素分别与该标量相乘。 矩阵相加 :两个矩阵的形状必须一致,同位置的元素分别相加。 零矩阵 :所有元素均为0的矩阵。 单位矩阵Identity matrix :必须是方阵,对角线元素为1,其余为0,用In表示n*n的单位矩阵。 同形状的矩阵的一些运算法则 : 矩阵的转置 :沿左上到右下的对角线为轴进行翻转,将(i,j)位置的元素与(j,i)位置的元素互换得到的矩阵,转置的矩阵用AT表示。 矩阵转置的一些运算规则 : 2.3 矩阵与向量相乘 矩阵和向量相乘,结果如下: 从行的角度来看矩阵和向量相乘 :从行的角度看,矩阵A和向量x相乘,其结果是矩阵的A的每一行与向量x做点积(dot product,后面再介绍) 的结果。 从列的角度来看矩阵和向量相乘 :从列的角度看,矩阵A和向量x相乘,相当于对矩阵A的列向量做了一次线性组合。 因此,无论从行角度还是列角度,矩阵A的列数要与向量x的维数相同。 矩阵和向量相乘的一些性质 : 如果A和B都是m*n的矩阵,对所有的w,如果都有Aw=Bw,那么是否意味着A=B。结果是显然的。既然是所有的w,那么我们用标准向量就可以得到A和B的每一列都是相同的,因此A=B。 3、线性方程组有解么? 3.1 线性方程组 对于一个线性方程组,我们可以写成矩阵和向量相乘的形式: 对于一个线性方程组,其解的情况可能是无解,有唯一解或者有无穷多个解。我们把所有的解的集合称为 解集(solution set) 如果线性方程组有解,我们就称其为 相容的(consistent) ,若无解,则称为 不相容的(inconsistent) 。 3.2 线性组合Linear Combination 线性组合是一个操作,将各个向量缩放之后,相加在一起,就得到了参与操作的向量之间的线性组合。 所以线性方程组的问题可以转变成:b是否可以表示成A中列向量的线性组合? 举几个例子: 通过观察上面的例子,你可能会想,在二维平面中,是不是只要两个向量不平行,就一定有解?答案是肯定的,但有解时两个向量不一定平行,因为目标向量也可能跟它们平行。 3.3 张成的空间Span 对于一个向量集S,其向量的所有线性组合组成的向量集V,称为 Span(S) ,也被称为 S张成的空间 。 举几个二维空间中的例子吧,如果S中只有零向量,那么其张成的空间也只有零向量。 如果S中包含一个非零向量,那么其张成的空间是一条直线: 如果一个向量集包含两个不平行的非零向量,那么其可以张成整个二维平面: 所以一个线性方程组的问题又可以转换成两一个等价的问题:向量b是否在A的列向量所张成的空间中? 4、线性方程组有多少个解 在上一节中,我们知道了如果b可以表示成A中列向量的线性组合或者b在A的列向量所张成的空间中,那么线性方程组有解,否则无解。但是,有解的情况下是唯一解还是多个解呢?我们还不知道。 4.1 线性相关和线性无关 给定一个向量集,如果其中一个向量可以表示成其余向量的线性组合,那么我们就说这组向量是 线性相关(Linear Dependent) 的。值得注意的是,零向量是任意向量的线性组合,因此只要包含零向量的向量集,都是线性相关的。 线性相关还有另一种定义,即可以找到一组非全零的标量,使得线性组合为零向量。 与之相对应,如果无法找到一组非全零的标量,使得线性组合得到零向量,那么这组向量就是 线性无关的(Linear Independent) : 判断向量集是线性无关还是线性相关,其实就是看一个 齐次方程(Homogeneous Equations) 有无非零解: 由此,对于Ax=b,我们可以得到两个结论:如果A的列是线性相关的,且Ax=b有解,那么,它有无穷多个解;如果Ax=b有无穷多个解,那么A的列是线性相关的: 4.2 秩Rank 矩阵的秩(Rank) 定义为线性无关的列的最大数目: 矩阵的零化度(Nullity) 是矩阵的列数减去矩阵的秩: 也就是说,如果一个m*n的矩阵,其秩为n的话,它的列是线性无关的: 所以总结一下线性方程组的解的相关问题: 5、求解线性方程组 5.1 初等行变换 如果两个线性方程组的解集是相同的,我们就称它们是等价的(equivalent)。 对线性方程组做以下三种操作可以得到等价的方程组: 1)交换两行 2)对其中一行变为k倍 3)将一行的k倍加到另一行上 上面的三种操作我们也称为 初等行变换(elementary row operations) 这里我们介绍一下 增广矩阵(Augmented Matrix) ,即将A和b进行横向拼接: 因此,通过初等行变换,如果我们能够将增广矩阵转换为一个相对简单的形式,那么我们可以很快的得出最终的解。 5.2 简化行阶梯形式Reduced Row Echelon Form 我们首先介绍行阶梯形式的矩阵,它满足两个条件,首先是非零行要在全零行的上面,其 先导元素(leading entries,每行的第一个非零元素) 按阶梯型排列: 在上述两个条件的基础上,如果先导元素所在的列都是标准向量的话,那么它就是 简化行阶梯形式Reduced Row Echelon Form : 下面的矩阵不是简化行阶梯形式: 而下面的矩阵是简化行阶梯形式: 根据简化行阶梯形式,我们很容易得到线性方程组的解的形式。 如果简化行阶梯形式是[I;b']的,那么线性方程组有唯一解: 下面的例子是有无穷多个解的情况,可以看到,第1、3、5列是包含先导元素的标准向量,其对应的变量也称为基本变量,而第2、4个变量被称为自由变量: 下面的例子是无解的情况,先导元素出现在了最后一列: 通过将增广矩阵化简为简约行阶梯形式,进而求解线性方程组解的方法,我们称之为 高斯消元法(Gaussian Elimination) 接下来,我们来看一下简约行阶梯型形式的一些性质: (1)化简为简约行阶梯型形式之后,列之间的关系不变 也就是说, 初等行变换不改变矩阵中列之间的关系 。加入A的简约行阶梯形式是R,那么Ax=0和Rx=0有相同的解集。 但是对于行来说,行阶梯形式改变了行之间的关系,比如原先两行是两倍的关系,其中一行变为二倍之后,二者就相等了,关系自然改变了。 (2)简约行阶梯形式改变了矩阵列所张成的空间 举个简单的例子就能理解,假设一个矩阵是[[1,2],[2,4]],它所张成的空间是y=2x,化简后得到[[1,0],[0,0]],此时所张成的空间却是整个平面。但是没有改变行所张成的空间。 (3)先导元素所在的列线性无关,其他列是这些列的线性组合 先导元素所在的列,在原矩阵中被称为 主列(pivot columns) ,这些列是线性无关的,其他列可以有主列的线性组合得到。 (4) 矩阵的秩等于主列的个数,等于简约行阶梯型里非0行的个数 根据这个性质,我们可以得到矩阵的秩的一个性质: Rank(A) <= Min(Number of columns,Number of rows) 因为秩等于主列的个数,所以秩一定小于等于列的个数,因为秩等于简约行阶梯型中非零行的个数,所以秩一定小于等于矩阵行的个数。 有这个性质我们还可以得出两个简单的结论: 对于m*n的矩阵A,如果m BA (2)(AB)T= BTAT (3)其他性质 (4)对角矩阵相乘 6.3 分块矩阵乘法 分块矩阵相乘和普通矩阵相乘其实是相同的: 7、逆矩阵 7.1 什么是矩阵的逆 如果两个方阵A和B的乘积是单位矩阵,AB=I,那么A和B就是互为逆矩阵。 一个矩阵是 可逆的(invertible) 的,必须满足两个条件,首先要是方阵,其次是可以找到另一个方阵B,使得AB=I。 并不是所有的方阵都是可逆的。同时,一个矩阵的逆矩阵是唯一的 : 逆矩阵可以用来求解一个线性方程组,但这种方法要求A是一个方阵,同时在计算上并不是十分有效率的: 7.2 初等矩阵 我们之前介绍了三种初等行变换,其实初等行变换都可以用矩阵相乘表示,这种左乘的矩阵被称作 初等矩阵(Elementary Matrix) 。即单位矩阵经过一次初等变换得到的矩阵。 既然左乘一个初等矩阵相当于对单位矩阵做一次初等行变换,那么只要再左乘一个相反操作的初等矩阵,就可以再次变回单位矩阵,所以初等矩阵的逆很容易得到: 回顾我们如何得到矩阵的简约行阶梯形式,用的就是初等行变换,因此我们可以用左乘初等矩阵的形式,来得到矩阵的简约行阶梯形式。

线性代数知识点归纳有线性方程组是线性代数的核心,线性方程组是一个或几个包含相同变量x1,x2,xn的线性方程组成的,方程组所有可能的解的集合称为线性方程组的解集。两个线性方程组若有相同的解集,则称为等价的。

线性方程组的解法思路是把方程组用一个更容易解的等价方程组(既有相同解集)代替、用方程序第一个含x1的项消去其他方程组x1的项,然后用第二个含x2的项消去其他含x2的项,以此类推,他有三个性质:倍加变换、对换变换、倍乘变换。

线性代数介绍

线性代数是关于向量空间和线性映射的一个数学分支,包括对线、面和子空间的研究,也涉及到所有向量空间的一般性质。

线性代数是纯数学和应用数学的核心,它的含义随着数学的发展而不断扩大,其理论和方法已经渗透到数学的许多分支,也成为理论物理和理论化学不可缺少的代数基础知识。

线性代数是代数学的一个分支,主要处理线性关系问题。线性关系意即数学对象之间的关系是以一次形式来表达的。

例如,在解析几何里,平面上直线的方程是二元一次方程;空间平面的方程是三元一次方程,而空间直线视为两个平面相交,由两个三元一次方程所组成的方程组来表示。含有n个未知量的一次方程称为线性方程。

关于变量是一次的函数称为线性函数。线性关系问题简称线性问题。解线性方程组的问题是最简单的线性问题。

  • 索引序列
  • 自考怎么学线性代数知识
  • 线性代数自考知识点
  • 自考线性代数知识点
  • 自学考试线性代数知识点
  • 线性代数自考知识点归纳
  • 返回顶部