首页 > 自考本科 > 自考电子技术必考哪些

自考电子技术必考哪些

发布时间:

自考电子技术必考哪些

自考应用电子技术本科要考16科,分别为思想道德修养与法律基础、毛泽东思想和中国特色社会主义理论体系概论、英语(一)、高等数学(工专)、线性代数、电子测量、电路分析基础、模拟电子技术基础、数字电路、数字电路(实)、非线性电子电路、微型计算机原理及应用、计算机基础与程序设计、电视原理、电视原理(实)、电子技术课程设计、电子技术课程实验(实)、法学概论。自考应用电子技术专科要考31科,分别为数字电路、数字电路(实践)、线性电子电路(实践)、高频电子线路(实践)、低频电子线路、低频电子线路(实践)、思想品德修养与法律基础、电路基础、电路基础(实践)、电磁场、微波与天线、有线电视技术与卫星接收、微型计算机原理及应用、微型计算机原理及应用(实践)、办公自动化设备、数据通信技术、单片机原理及应用、单片机原理及应用(实践)、电子测量、电子测量(实践)、高等数学(工专)、高频电子线路、计算机基础与程序设计、计算机应用基础、线性代数、毛泽东思想和中国特色社会主义理论体系概论、线性电子电路、移动通信原理与应用、应用数学、英语(一)、大学语文、计算机基础与程序设计(实践)。自考/专升本有疑问、不知道自考/专升本考点内容、不清楚当地自考/专升本考试政策,点击底部咨询官网,免费获取个人学历提升方案:

自考计算机本科考哪些? 1、必考课程 离散数学、C++程序设计、概率论与数理统计(二)、英语(二)、软件工程、数据库系统原理、高等数学(工本)、计算机系统结构、Java语言程序设计(一)、数据结构; 计算机及应用、计算机及应用课程实验(二)(实践考核)、毕业设计(实践考核)、操作系统、计算机网络原理、中国近现代史纲要、马克思主义基本原理概论等。 2、加考课程 计算机组成原理、普通逻辑、电子技术基础(三)(笔试+实践考核)、高级语言程序设计(一)(笔试+实践考核)等。 自考本科计算机专业难不难 计算机专业本身的难度还算是可以的,这个专业十分考验一个人的工匠精神的,要是他本身就是能静下来,熬得起时间,仔细打磨的话,基本上是可以学习到很多的。 从课程设置来看,该专业的难度确实很大,课程专业性很强,再加上编程语言比较抽象,自学起来难度是非常大的,因此考生可以选择专业的辅导班来学习。 如果考生觉得难度太大,从就业的角度看,自学考试还开设了相当多符合以上就业条件的专业,如:自考汉语言文学教育,自考日语,自考护理学等,都是目前发展前景比较好的专业,考生可跟个人的兴趣爱好来进行选择。 报考自考本科计算机需要大专证吗 自考本科报考是没有条件限制,无论考生是什么学历层次以及什么年龄阶段都是可以报考的,但在申请自考本科毕业时必须拿到国家承认的专科毕业证书,国家承认的专科毕业证书包括成人教育的成人高考专科毕业证书。所以,大家可以在考自考本科的同时,考取大专文凭,只要在自考本科毕业之前考下来即可。自考/成考有疑问、不知道如何总结自考/成考考点内容、不清楚自考/成考报名当地政策,点击底部咨询官网,免费领取复习资料:

电子工程自考本科科目有:马克思主义基本原理概论、中国近现代史纲要、英语(二)、物理(工)(实践)、物理(工)、工程经济、信号与系统、信号与系统(实践)、数字信号处理、数字信号处理(实践)、单片机原理及应用、单片机原理及应用(实践)、计算机软件基础(二)(实践)、计算机软件基础(二)、工程数学(线性代数、概率统计)、控制工程基础、无线传感器网络、数字图像技术、通信原理与系统、中国文化概论、企业管理概论、多媒体技术、电子工程毕业设计(论文)。 全日制自考本科与统招本科的区别: 1、学籍管理不同:全自考考生只需在县区自考办报名或者大学的继续教育学院报名即取得考籍,统招全日制本科在报考院校报名后,学籍档案在省教委备案。 2、考试时间不同:自考由考试院、考办在每年的一、四、七、十月组织考试,可重复报考,无合格时间限制(本科学位申请有特殊要求的除外),应用型自考由统考和校考组成;统招全日制在每学期期末考试,不及格者可参加补考。 3、参考形式不同:全日制自考参加的是高等教育自学考试的形式,考生选择助学单位辅助学习。统招全日制本科是通过正规的普通高考进入高校学习并取得大学学历的学生。 4、考试及命题方式不同:全日制自考由全国考委和省自考委联合出题制卷;统招全日制科目设置分为统考课程和校考课程两类,统考课程由国家组织命题和考试,校考课程由学校命题考试。自考/成考有疑问、不知道如何总结自考/成考考点内容、不清楚自考/成考报名当地政策,点击底部咨询官网,免费领取复习资料:

电子电路eda技术自考必备

EDA技术零基础入门课程大纲

EDA技术的出现,极大地提高了电路设计的效率和可操性,减轻了设计者的劳动强度。以下是我整理的关于EDA技术零基础入门课程大纲,希望大家认真阅读!

1.前言

能利用电子电路设计软件进行电路设计的仿真试验、设计电子电路原理图、设计电子电路印刷电路板,是应用电子技术专业学生必须掌握的职业技能。Altium Designer软件是集电子电路原理图设计、印刷电路板设计和对电子电路功能进行仿真、分析为一体的电子电路计算机辅助设计软件,教好Altium Designer软件应用这门课程,为学生以后选择相关的电子行业工作岗位、进行电子产品的自主开发都是一个有力的支撑。

1.1课程性质

《EDA技术》是利用电子电路计算机辅助设计软件(Altium Designer)进行电子电路原理图设计、印刷电路板设计和对电子电路功能进行仿真、分析。EDA技术对于应用电子技术专业的学生是一门十分重要的专业技术,《EDA技术》课程是电子技术应用专业的专业核心课程。

1.2课程基本理念

(1)以培养和提高学生职业技能和职业素养为宗旨,根据课程的实用性、实践性、规范性、开放性和综合性特点进行课程开发和课程设计。

(2)灵活运用多种教学方法,促进知识与技能、过程与方法、理论与实际的融合,提高学生的理论联系实际的能力,分析问题和解决问题的能力以及实践能力,使学生获得全面的发展。

(3)构建面向课程的评价体系,依据教学目标对学生学习效果和教师教学工作过程进行价值判断, 以促进学生职业技能和职业素养的提高、教师专业素质的提高和教学方法的改进。

1.3标准设计思路

(1)根据本课程的实用性、实践性、规范性、开放性和综合性的特点进行课程开发,以培养和提高学生的职业技能和职业素养。为每一个学生的学习和发展提供机会。关注学生的个性差异,使每个学生的潜能都得到发展。

(2)以软件的操作方法、应用技巧为主线;以实际工程项目为载体;以适合行业、企业的职业能力培养为目标;进行基于工作过程的技能训练课程开发。构建以培养学生职业能力和职业素养为目标的模块化、项目式课程结构和以岗位工作过程相一致的理实一体化教学模式。激发学生学习电路设计的积极性,提高学生电路设计的能力。

(3)在新的评价观念指导下,构建发展性、多元化的评价体系。注重设计过程的形成性评价与设计成果的终结性评价相结合,学校的学习性评价和企业的价值性评价相结合,以促进学生职业素养的提高、教师专业素质的提高和教学方法的改进。

(4)通过以项目为载体的学习和训练,让学生经历电子产品的设计过程,培养其创新意识和实践能力。鼓励在自主性学习中合理运用电子设计技术。

(5)大力提倡自主性学习,创造多种途径促进学生自主性学习。如加强各类课外科研活动;让学生参加有关的电子设计竞赛;进行EDA技术的课程设计、《电子产品设计》课程学习中以及毕业设计中大量应用EDA技术。为学生的可持续发展和终身学习打下基础。

2.课程目标

2.1 课程总目标:

通过本课程的学习,使学生掌握Altium Designer软件的操作技能,掌握印刷电路板的设计过程和设计方法,达到国家职业标准要求。为将来胜任电子行业相关岗位的专业技术工作,具备突出的工程实践能力奠定良好的基础。

2.2 具体目标

2.2.1 知识目标

(1)掌握计算机windows系统操作的基本知识

(2)掌握基本电子技术、电路设计及印刷电路板的基本知识

(3)掌握基本原理图、PCB图的生成及绘制的基本方法和知识

2.2.2 素质目标

(1)培训学生的沟通能力及团队协作精神

(2)培养学生分析问题、解决问题的能力

2.2.3 能力目标

(1)具有基本的操作计算机系统的能力

(2)具有高质量设计电子电路原理图的能力和设计符合电子工程要求的印刷电路板的能力

(3)具有设计原理图元件和电子元件封装的能力

2.2.4情感与价值观:

(1)通过自我展示体验成功,培养学生的成就感;

(2)通过自主学习,小组讨论培养集体荣誉感;

(3)培养学生创造美、鉴赏美的'能力。

3.课程内容和要求

根据专业课程目标和涵盖的工作任务要求,确定课程内容和要求,说明学生应获得的知识、技能与态度。

(1)Altium Designer系统及参数设置

主要介绍Altium Designer软件的功能、组成、运行环境、安装方法,重点介绍Altium Designer系统的配置方法。

(2)原理图编辑器的设置

主要介绍原理图编辑器的General、Graphical Editing、Mouse Wheel Configuration、Compiler、 Autofocus、Grids、Break Wire、Default Units、 Default Primitives 、Orcad(tm)等选项卡的设置。

(3)原理图编辑器的显示控制

主要介绍原理图编辑器的【View】菜单简介、原理图编辑器显示调节命令、原理图编辑器缩放显示控制命令、原理图编辑器工具栏、“workspace Panels”工面板、【Desktop Layout】桌面布局控制命令、其他显示控制命令、“windows”设置窗口显示的内容。

(4)原理图编辑器工作面板

主要介绍3.3.1 面板显示模式面板的显示控制、剪贴板(Clipboard)面板、收藏夹(Favorites)面板、文件(File)夹面板、库(libraries)面板、项目(Project)面板、存储器管理(Storage manager)、面板、设计片段(Snippets)面板、导航器(Navigator)面板、编译对象调试器(Compiled Object Debugger)面板、图纸(Sheet) 面板、原理图列表(SCH List) 面板、原理图检查器(SCH Inspector) 面板、原理图过滤器(SCH Filter)面板、帮助(Help)面板、知识中心(Knowledge Center)面板、快捷键提示(Shortcuts)面板的作用与操作。

(5)原理图组成对象的放置

主要介绍 Altium Designer 元器件库、元器件库的加载与卸载、元器件的查找、放置元件与元件属性设置、元件属性设置对话框、设置属性区各参数、设置图形区各参数、编辑元件引脚、设置参数列表(Parameters For*)区域各参数、设置参数列表(Models For*)区域各参数、放置导线和导线的调整、放置总线入口和设置总线入口属性、放置网络标号和设置网络标号属性、放置总线和设置总线属性、放置节点和设置节点属性、放置电源端子和设置电源端子属性、放置指示符和设置指示符属性、放置注释文字和设置注释文字属性、放置直线和设置直线属性、放置多边形和设置多边形属性、放置椭圆圆弧和设置椭圆圆弧属性。

(6)编辑电路原理图

主要介绍选取对象、选取对象命令【Select】、剪切对象、智能粘贴命令【Smart Paste】、删除对象、移动和排齐对象、剪切导线、平移图纸和光标跳转、文本编辑命令、选择存储器、全局编辑、原理图元件的全局编辑、字符的全局编辑等电路原理图编辑方法。

(7)原理图编辑器的高级设计功能

主要介绍生成项目元件库、设计模板管理、参数管理器、元件封装管理器、为项目中的图纸编号、从原理图库更新原理图元件、设计对象的转换等高级编辑功能。

(8)原理图结构及设计

主要介绍平坦式原理图设计、页末链接器的操作和应用、平坦式原理图设计方法、输入/输出端口索引的应用、带组合封装元件的原理图设计、层次原理图的设计、输入输出端口的操作和应用、电路方块图的操作和应用、电路方块图进出点的操作和应用、层次原理图自上而下的设计方式、层次原理图自下而上的设计方式、功能线束、功能线束连接器的操作、功能线束进出点的操作、信号线束的操作、功能束线相关元件的操作、软件默认的功能线束、设备图表符等原理图设计方法。

(9)原理图元件的设计

主要介绍原理图元件编辑环境原理图元件设计、直接设计、编辑设计、多子件原理图元件设计、设计原理图元件属性等内容。

(10)原理图设计的输出和导入

主要介绍材料清单报表(BOM)材料清单、简易材料清单、层次设计报表、输出作业文件管理器、设计项目打包器、智能PDF生成器、外部设计导入向导等内容。

(11)PCB编辑器系统参数设置

主要介绍常规参数(PCB Editor-General)设置、显示参数(PCB Editor-Display)设置、板观察器显示参数(PCB Editor-Board Insight Display)设置、板观察器模式参数(PCB Editor-Board Insight Modes)设置、交互式布线参数(PCB Editor-Interactive Routing)设置、显示/隐藏参数(PCB Editor-Show/Hide)设置、字体参数(PCB Editor-True Type Fonts)设置、鼠标滚轮参数(PCB Editor-Mouse Wheel configuration)设置、默认参数(PCB Editor-Defaults)设置、报告参数(PCB Editor-Reports)设置等内容。

(12)PCB板层设置

主要介绍印刷电路板的结构、PCB形状设置、PCB层集合管理器、启动层集合管理器、添加信号层(Signal Layer)、添加内电层 (Internal Plane)、钻孔对管理器、阻抗计算公式编辑器、放置电路板层集合图注、层定义及显示和颜色属性、设置层定义及显示和颜色属性、层定义、系统工作层颜色属性、PCB层集合管理器(Layer Sets Manager)等内容。

(13)PCB设计规则

主要介绍电气规则(Electrical)布线规则(Routing)、表面式封装设计规则(SMT)、屏蔽设计规则(Mask)、内电层设计规则(Plane)、测试点设计规则(Testpoint)、制造设计规则(Manufacturing)、

高频电路设计规则(High Speed)、元件布局规则(Placement)、信号完整性分析设计规则(Signal Integrity)、规则向导(Rule Wizard)的设计规则。

(14)PCB常用对象的放置及属性设置

主要介绍放置辅助对象及属性设置、放置直线Line)及属性设置、放置字符串(String)及属性设置、放置焊盘(Pad)及属性设置、放置过孔(Via)及属性设置、放置元件(Component)及属性设置、放置坐标(coordinate)及属性设置、放置尺寸(Dimension)及属性设置、直线尺寸标注(Linear)、其他尺寸标注图示、放置敷铜(Polygon Pour)、放置禁止布线对象等内容。

(15)编辑PCB文件

主要介绍选择性粘贴命令、选择对象、布线切割器命令、移动对象命令、对齐对象命令、孔径编辑器、原点设置、跳转功能、电路板三维显示、板观察器、飞线显示等内容。

(16)PCB布局布线

主要介绍导入原理图设计数据、元件布局、自动布线、交互式布线、交互式差分对布线、智能交互式布线、实时阻抗布线、多线轨布线、等长布线、交互式调整布线长度等内容。

(17)PCB编辑器高级设计工具

主要介绍网表管理、网表管理器、清理网络布线、配置物理连接网络、布局布线空间、对象分类管理器、设计规则检查器、元件体管理器、选择元件体形状、添加元件体到封装、设置元件体参数、元件体的批处理设置、撤销布线、重新标注元件、从PCB库更新封装、交互定位、交互选择、转换工具、补泪滴和删除泪滴、屏蔽导线、距离测量、报告输出板卡信息报表、网络状态报表等设计工具。

(18)元件封装设计

主要介绍元件封装的组成、元件封装设计、直接设计元件封装、编辑其它元件封装得到新的元件封装、利用封装向导获得元件封装。

4.课程实施

4.1教学内容:

课程教学中将课程的教学内容从传统的软件操作技能训练过渡到电路板设计能力的培养。按照电子产品电路板实际设计过程的要求选择实际电子产品研发领域的典型电路为学习载体,将完成设计任务需要的知识和技能进行分解、归纳、综合为三个层面:操作方法、应用技巧、行业规则和设计经验;将操作方法、应用技巧、行业规则和设计经验融合到学习中,使学生在学习和借鉴实际案例和仿真实际工作过程中开展学习,结合工程要求和工艺规范进行印刷电路板设计的技能训练。在熟练掌握《EDA技术》的相关理论支撑和各项操作技能的基础上,以电子信息技术领域典型的产品和技术进行课程设计,实现教学和生产的无缝对接,并培养学生良好的职业素养和职业意识。

课程教学采用模块化-项目式教学方案

【具体见附录:《EDA技术》教学计案(模块式-项目化)】

4.2教学方法:

教学中宜采用模块化-项目式教学模式和与岗位工作过程相一致的理实一体化训练模式。激发学生学习电路设计的积极性,提高学生电路设计的能力。教学中应采用多元化教学方法,多元化的教学方法尊重学生的个性和创造性,可极大地调动学生的学习积极性,产生了良好的效果。可以灵活采用下列教学方法:

(1)交互式教学法:为调动学生独立思考的积极性,理论课教学中教师或学生提出问题,师生之间、学生之间互动讨论,调动学生的积极参与性;在设计与实验实训中,教师引导学生讨论方案、方法等。

(2)任务驱动教学法:教师给出设计项目及其目标,学生根据任务目标完成项目的各个环节,如资料查找、项目方案设计、原理图与PCB设计等。这种方法使学生任务目标明确,充分发挥学生的自主性,有利于培养其独力工作能力。

(3)研究式教学法:采用研究的观点、研究的思路、研究的方法讲授课程内容,设置研究性的实验项目和作业。

(4)开放式自主实践教学法:开放实验实训室,学生自主实验,达到自主学习的目的。

另外,在提高教学质量的手段上还可以通过课外科研活动、让学生参加有关的电子设计竞赛、进行EDA技术的课程设计、后续相关课程学习中以及毕业设计中大量应用EDA技术。为学生的学习和应用EDA技术,促进电子设计水平的提高提供更多的机会。

4.3教学评价

采用发展性、多元化的评价体系。注重设计过程的形成性评价与设计成果的终结性评价相结合,引进企业和质量评价机制,以促进学生的质量意识,培养一丝不苟的敬业精神。

在新的评价观念指导下,构建发展性、多元化的评价体系,灵活应用下列评价方式:

(1)设计过程的形成性评价方式

(2) 设计成果的终结性评价方式

(3) 学校的学习性评价方式

(4) 企业的价值性评价方式

(5)企业的产品价值(质量)评价方式(奖励品、优等品、合格品、不合格品)

4.4.教材选用

4.4.1现成教材选用:

一、教材:

Altium Designer 15.0电路仿真.设计.验证与工艺实现权威指南

——何滨 清华大学出版社 2015

二、参考教材:

1. Altium Designer电路设计全攻略 电路图设计

——张义和 科学出版社 2013

2. Altium Designer电路设计全攻略 电路板设计

——张义和 科学出版社 2013

3. Altium Designer实用宝典:原理图与PCB设计

——闫胜利 电子工业出版社 2007

4. Altium Designer快速入门

——徐向明 北京航空航天大学出版社 2008

4.4.2 自编教材规划:

自编教材要力求接近实践,最好是来源于实践的案例与情境,并开发课程的习题、参考文献等内容,向学生开放,以利于学生自主学习。

EDA技术是指以计算机为工作平台,融合了应用电子技术、计算机技术、信息处理及智能化技术的最新成果,进行电子产品的自动设计。

核心内容包括数字系统的设计流程、印刷电路板图设计、可编程逻辑器件及设计方法、硬件描述语言VHDL、EDA开发工具等内容。EDA技术的出现,极大地提高了电路设计的效率和可操作性,减轻了设计者的劳动强度。

设计者在EDA软件平台上,用硬件描述语言VerilogHDL完成设计文件,然后由计算机自动地完成逻辑编译、化简、分割、综合、优化、布局、布线和仿真,直至对于特定目标芯片的适配编译、逻辑映射和编程下载等工作。

EDA技术的发展:

1、80年代为计算机辅助工程(CAE)阶段。与CAD相比,CAE除了有纯粹的图形绘制功能外,又增加了电路功能设计和结构设计,并且通过电气连接网络表将两者结合在一起,实现了工程设计。CAE的主要功能是:原理图输入,逻辑仿真,电路分析,自动布局布线,PCB后分析。

2、90年代为电子系统设计自动化(EDA)阶段。

3、现代EDA技术就是以计算机为工具,在EDA软件平台上,根据硬件描述语言HDL完成的设计文件,能自动地完成用软件方式描述的电子系统到硬件系统的布局布线、逻辑仿真,直至完成对于特定目标芯片的适配编译、逻辑映射和编程下载等工作。

4、ESDA代表了当今电子设计技术的最新发展方向,其基本特征是:设计人员按照“自顶向下”的设计方法,对整个系统进行方案设计和功能划分,系统的关键电路用一片或几片专用集成电路(ASIC)实现。

参考资料来源:百度百科-eda

电子信息工程自考哪些科目?公共课:中国近现代史纲要、英语(二)、马克思主义基本原理概论;专业课:信息资源管理、信息技术导论、多媒体应用技术、电子电路EDA技术(实践)、计算机网络管理(一)(实践)、计算机网络管理(一)、信息安全工程、电子电路EDA技术、信息系统开发、计算机信息处理技术;选考课:JAVA语言程序设计、C语言程序设计、电子测量、电子测量(实践)、电子技术基础(一)、电子技术基础(一)(实践)、数据库及其应用、数据库及其应用(实践)、逻辑电路、毕业考核论文等。电子信息工程自考难不难自考本身就具备难度,需要自学自律,把每一门科目都考过才能毕业。电子信息工程的难度并不会太高,范围虽广但都比较简单易学,如果是感兴趣的学科,就更容易上手。由于有较多的实践科目,比较考验动手实操能力,考生不仅要能够学会还要能够理解并应用,这才是该专业的意义所在。所以难不难要看考生个人的情况,有的人刚好就适合它,觉得比较简单,有的人不适合,就觉得特别难,因人而异。自考/成人高考有疑问、不知道如何选择主考院校及专业、不清楚自考/成考当地政策,点击底部咨询猎考网,免费领取复习资料:

自考电子技术有哪些

自考应用电子技术本科科目有思想道德修养与法律基础、毛泽东思想和中国特色社会主义理论体系概论、英语(一)、高等数学(工专)、线性代数、电子测量、电路分析基础、模拟电子技术基础、数字电路、数字电路(实)、非线性电子电路、微型计算机原理及应用、计算机基础与程序设计、电视原理、电视原理(实)、电子技术课程设计、电子技术课程实验(实)、法学概论。

免费领取自考学习资料、知识地图:

自考应用电子技术本科课程有:思想道德修养与法律基础、毛泽东思想和中国特色社会主义理论体系概论、英语(一)、高等数学(工专)、线性代数、电子测量、电路分析基础、模拟电子技术基础、数字电路、数字电路(实)、非线性电子电路、微型计算机原理及应用、计算机基础与程序设计、电视原理、电视原理(实)电子技术课程设计、电子技术课程实验(实)、法学概论。自考应用电子技术专科课程有:数字电路、数字电路(实践)、线性电子电路(实践)、高频电子线路(实践)、低频电子线路、低频电子线路(实践)、思想品德修养与法律基础、电路基础、电路基础(实践)、电磁场、微波与天线、有线电视技术与卫星接收、微型计算机原理及应用、微型计算机原理及应用(实践)、办公自动化设备、数据通信技术、单片机原理及应用、单片机原理及应用(实践)、电子测量、电子测量(实践)、高等数学(工专)、高频电子线路、计算机基础与程序设计、计算机应用基础、线性代数、毛泽东思想和中国特色社会主义理论体系概论、线性电子电路、移动通信原理与应用、应用数学、英语(一)、大学语文、计算机基础与程序设计(实践)。自考/专升本有疑问、不知道自考/专升本考点内容、不清楚当地自考/专升本考试政策,点击底部咨询官网,免费获取个人学历提升方案:

自考应用电子技术专业主要学习智能电子产品设计、质量检测、生产管理等方面的基本理论知识和基本技能。培养能在电子领域和部门生产第一线从事智能电子产品的设计与开发、质量检测、生产管理、智能电子产品的销售和技术支持技能应用型人才。应用电子技术专业既注重对学生基础理论和知识的培养,又注重对学生实践及实操能力的培养。教学内容始终以社会需求为导向,通过工学结合,项目导向和任务驱动等教学模式,以及校内生产性实训车间、顶岗实习等多种形式,大力提高学生的职业能力,使学生在毕业时就具备了所从事岗位的职业能力,实现零距离就业。应用电子技术专业面向现代电子技术行业,适应高科技电子产品和设备的生产、建设、服务和管理第一线需要,培养具有现代电子技术专业理论知识和应用能力,可从事现代电子产品开发、生产管理、设备维护、电子工艺与质量管理、技术支持、工程施工、产品销售及售后服务等工作的高技能专门人才。毕业的学生一部分考入硕士研究生继续深造学习,一部分去国外攻读硕士研究生学位,其他在社会就业,就业的渠道主要有:网络软件的开发与设计,网络设计的研发,电子信息产品的设计,通信网络的维护与管理,信息系统集成等。学生毕业后可以从事电子设备和信息系统的设计、应用开发以及技术管理等。比如,做电子工程师,设计开发一些电子、通信器件;做软件工程师,设计开发与硬件相关的各种软件;做项目主管,策划一些大的系统,这对经验、知识要求很高;还可以继续进修成为教师,从事科研工作等。自考/专升本有疑问、不知道自考/专升本考点内容、不清楚当地自考/专升本考试政策,点击底部咨询官网,免费获取个人学历提升方案:

电子技术基础三自考必背

第1章 电路的基本概念及基本定律 电路分析基础是高职、高专电类各专业的一门专业技术基础课程。《电路分析基础》阐述了电路的基本概念、基本定理及其基本分析方法,是从事任何电类专业学习和工作的人员普遍要学习和掌握的、必不可少的知识。本章介绍的内容是贯穿全书的基本理论基础,要求在学习中给予足够的重视。本章的学习重点:l 电路模型的概念和理想电路元件的概念;l 电压、电流参考方向的概念及其与实际方向之间的联系,电功率的概念;l 理想的无源元件、有源元件的概念;l 基尔霍夫电流、电压定律的深刻理解和应用;l 电路“等效”概念的建立及其电路“等效”的基本方法;l 直流电路中电位的计算及其负载上获得最大功率的条件。1.1 电路和电路模型 1、学习指导(1)电路的组成和功能电路通常由电源、负载、中间环节三大部分组成。电路分有两种类型:电力系统的电路功能是实现电能的传输、分配和转换;电子技术的电路功能是对电信号进行传递、变换、储存和处理。(2)电路模型电路理论是建立在一种科学的抽象——“电路模型”的概念和基础上进行阐述的。所谓电路模型,实际上是由一些理想电路元件构成的、与实际电路相对应的电路图。对工程实际问题进行分析和研究时,我们往往在一个实际电路给定的情况下,首先对该电路进行模型化处理,并使模型电路的性状和实际电路的性状基本相同或十分逼近,然后借助于这种理想化的电路模型,对实际电路的问题进行分析和研究。利用电路模型分析和研究实际电路是一种科学的思维方法,也是工程技术人员应具备的业务素质之一。(3)理想电路元件理想电路元件是电路模型中不可再分割的基本构造单元并具有精确的数学定义。理想电路元件也是一种科学的抽象,可以用来表征实际电路中的各种电磁性质。例如“电阻元件”表征了电路中消耗电能的电磁特性;“电感元件”表征了电路中储存磁场能量的电磁特性;“电容”元件则表征了电路中储存电场能量的电磁特性。实际电路中的实体部件上发生的电磁现象往往是复杂的、多元的,如电阻器、电炉等设备,它们除了具有消耗电能的特性外,还有磁场和电场方面的特性,分析时若把它们的全部电磁特性都表征出来既有困难也不必要。本着突出主要矛盾、忽略将要因素的研究方法,电阻器和电炉等设备完全可以用理想的“电阻元件”来作为它们的数学模型。显然,理想电路元件是从实际电路器件中科学抽象出来的假想元件,可以看作是实际电路器件的一种“近似”。理想电路元件简称为电路元件。虽然它们只能是实际电路器件的一种近似,但用它们及它们的组合可以相当精确地表征出实体电路器件的主要电磁特性。如工频条件下的电感线圈,其电路模型就可以用一个“电阻元件”和一个“电感元件”的串联组合来表征;一个实际的直流电压源的电路模型则可以用一个“电阻元件”和一个“理想电压源”的串联组合来表征等等。学习时注意理解各种理想电路元件的严格定义,区分实际电路元器件与理想电路元件之间的联系和差别。教材中如无特殊说明时,注意各理想电路元件都是指线性元件。2、检验学习结果解析(1)电路由哪几部分组成,各部分的作用是什么?解析:电路一般由电源、负载和中间环节三大部分组成。电源是电路中提供电能的装置,其作用是将其它形式的能量转换成电能;负载是电路中接收电能的装置,其作用是将电能转换成其它形式的能量;中间环节包括连接导线、开关及控制保护设备及测量机构,它们是电源和负载之间不可缺少的连接和控制部件,起着传输和分配能量、控制和保护电气设备的作用。(2)试述电路的分类及功能。解析:工程应用中的实际电路,按照功能的不同可概括为两大类:①电力系统中的电路:特点是大功率、大电流。其主要功能是对发电厂发出的电能进行传输、分配和转换。②电子技术中的电路:特点是小功率、小电流。其主要功能是实现对电信号的传递、变换、储存和处理。(3)何谓理想电路元件?如何理解“理想”二字在实际电路中的含义?何谓电路模型?解析:理想电路元件是从实际电路器件中科学抽象出来的假想元件,由严格的定义来精确地加以阐述、理想电路元件是具有单一电磁特性的简单电路模型单元。电路理论中研究的都是由理想元件构成的、与工程应用中的实际电路相对应的电路模型。在实际的电路中,“理想”电路元件是不存在的。白炽灯、电炉等设备,只所以在研究它们时可以把它们作为一个“理想”的电阻元件进行分析和研究,原因就是它们在实际电路中表现的主要电磁特性是耗能,其余电磁特性与耗能的电特性相比可以忽略;工频电路中的电感线圈只所以用一个电阻元件和一个电感元件的串联组合来表征,原因就是:在工频情况下,电感线圈的主要电磁特性就是线圈的耗能和储存磁场能量,其余电磁特性可以忽略。从以上分析可以把“理想”二字在实际电路中的含义解释为:“理想”就是一种与实际电路部件特性的“基本相似”或“逼近”。采用“理想”化模型分析实际问题,就是抓住实际电路中的主要矛盾,忽略其中的次要因素,预测出实际电路的性状,从而根据人们的需要设计出更好的各种电路。电路理论是建立在模型概念的基础上的,用理想化的电路模型来描述电路是一种十分重要的研究方法。由理想电路元件构成的、与实际电路相对应的电路图称为电路模型。4.你能说明集总参数元件的特征吗?你如何在电路中区分电源和负载?解析:集总参数元件的特征就是:在元件中所发生的电磁过程都集中在元件内部进行,其次要因素可以忽略的理想化电路元件。对于集总参数元件,任何时刻从元件一端流入的电流,恒等于从元件另一端流出的电流,并且元件两端的电压值是完全确定的。在电路中区分电源和负载的方法,一般是根据计算的结果来看:若元件发出功率(即元件两端电压与通过元件的电流的实际方向为非关联方向),说明元件是电源;若元件吸收功率(即元件两端电压与通过元件的电流的实际方向为关联方向),说明元件是负载。在计算前一般要根据元件两端电压和通过元件中的电流的参考方向来假定,当电路模型中所标示的电压、电流为非关联参考方向时,应按电源处理,若电路模型中标示的电压、电流为并联参考方向时,就要按负载处理,而确定元件的真实性质则要根据分析计算的结果来定。1.2 电路的基本物理量 1、学习指导(1)基本电量虽然我们在中学已经从物理概念上接触过电压、电流、电动势、电功率这些电量,但在本章的学习中,我们要从工程应用的角度上重新理解电压、电流、电动势、电功率这些电量的概念,并把它们与参考方向联系在一起加以理解。在电路分析中,电压就是电路中两点电位之差,是产生电流的根本原因;电流通过电路元件时,必然产生能量转换;电动势只存在于电源内部,其大小反映了有源元件能量转换的本领。(2)电功和电功率电流所做的功就是电功,日常生活中电度功就是电功,因此电功的单位除了焦耳还有KW·h(度);电功率则反映了设备能量转换的本领。如电气设备上标示的额定电功率,表征了该设备本身能量转换的本领:100W表示该设备在1s时间内可以把100J的电能转换成其它形式的能量,40W表示设备在1s时间内可以把40J的电能转换成其它形式的能量。(3)参考方向参考方向是电路分析过程中人们假定的电压、电流方向,原则上可以任意假定,习惯上若假定一个电路元件是负载时,就把这个元件两端的电压与通过这个元件上的电流的参考方向设立为“关联方向”,所谓关联方向就是电流流入端为电压的高极性端,电流的流出端是电压的低极性端,关联方向下元件吸收功率;如果假定某电路元件是电源,就把该元件上的电压、电流参考方向设为“非关联方向”,非关联就是电流由电压低极性端流入,由电压高极性端流出的参考方向,非关联方向下元件发出功率。(4)参考方向和实际方向正电荷移动的方向规定为电流的实际方向;电路中两点从高到低的方向规定为电压的实际方向。有了实际方向为什么还要引入参考方向,它们之间有什么样的差别和联系,这是学习时必须首先要搞清楚的问题。电压、电流的实际方向即指它们的真实方向,是客观存在;参考方向则是指电路图上标示的电压、电流的箭头方向,是人为任意假定的。分析和计算电路时,常常无法正确判断出电压、电流的真实方向,因此按照人们的主观想象,在电路图中标出一个假定的电压、电流方向,这就是参考方向。电路图中的参考方向一但标定,在整个电路分析计算过程中就不容改变。参考方向提供了电压、电流方程式中各量前面正、负号确定的依据。对方程求解的结果,若电压、电流得正值,说明标定的电压、电流参考方向与电压、电流的实际方向相符;若方程求解的结果是负值,则说明假定的参考方向与实际方向相反。电路分析和计算中,参考方向的概念十分重要,如果在计算电路时不标示电压、电流的参考方向,显然,方程式中各量的正、负就无法确定。本章强调了电路响应的“参考方向”在电路分析中的重要性。2、检验学习结果解析(1)如图1.3(a)所示,若已知元件吸收功率为-20 W,电压U=5V,求电流I。+-UI(a)关联参考方向-+UI(b)非关联参考方向图1.3 电压、电流参考方向元件元件 解析:图1.3(a)中元件两端的电压、电流为关联参考方向,显然是假想为一个负载。关联参考方向下 A电流得负值,说明通过元件中的电流的实际方向与参考方向相反,因此该元件实际上是一个电源。(2)如图1.3(b)所示,若已知元件中通过的电流I=-100A,元件两端电压U=10V,求电功率P,并说明该元件是吸收功率还是发出功率。解析:图1.3(b)中元件上的电压与电流为非关联参考方向,在非关联参考方向下显然是把元件假想为一个电源,因此元件发出的功率为 W元件发出负功率,实际上是吸收功率,因此图1.3(b)中元件实际上是一个负载。(3)电压、电位、电动势有何异同?解析:电压、电位和电动势三者定义式的表达形式相同,因此它们的单位相同,都是伏特【V】;电压和电位是反映电场力作功能力的物理量,电动势则是反映电源力作功能力的物理量;电压和电位既可以存在于电源外部,还可以存在于电源两端,而电动势只存在于电源内部;电压的大小仅取决于电路中两点电位的差值,因此是绝对的量,其方向由电位高的一点指向电位低的一点,因此也常把电压称为电压降;电位只有高、低、正、负之分,没有方向而言,其高、低、正、负均相对于电路中的参考点,因此电位是相对的量;电动势的方向由电源负极指向电源正极。(4)电功率大的用电器,电功也一定大。这种说法正确吗?为什么?解析:用电器铭牌上标示的电功率P的大小,反映了用电器能量转换的本领,是从制造厂出来就确定了的;电功W的大小则是反映了用电器实际耗能的多少,因为W=Pt,显然电功的大小与用电时间的长短有关。电功率再大的用电器,如果没有与电源接通,即t=0时,电功W=Pt=0。所以,电功率大的用电器,电功也一定大的说法是错误的。(5)在电路分析中,引入参考方向的目的是什么?应用参考方向时,会遇到“正、负,加、减,相同、相反”这几对词,你能说明它们的不同之处吗?解析:电路分析中之所以引入参考方向,目的是给分析和计算电路提供方便和依据。应用参考方向时遇到的“正、负”,是指在参考方向下,电压和电流的数值前面的正、负号,若参考方向下一个电流为“-2A”,说明它的实际方向与参考方向相反,参考方向下一个电压为“+20V”,说明该电压的实际方向与参考方向一致;“加、减”是指在参考方向下列写电路方程式时各量前面的正、负号;“相同、相反”则是指电压、电流是否为关联参考方向,电压、电流参考方向“相同”是指二者为关联参考方向,即电流流入端为电压的高极性端;“相反”是指电压、电流为非关联参考方向,即电流由电压的低极性一端流入。1.3基尔霍夫定律 1、学习指导(1)欧姆定律和基尔霍夫定律欧姆定律和基尔霍夫电流定律、基尔霍夫电压定律统称为电路的三大基本定律,它们反映了电路中的两种不同约束。欧姆定律阐述和解决的是某一元件对于电路基本变量(即元件两端电压与通过元件的电流)的约束关系;而基尔霍夫两定律阐述和解决的是电路元件互联后,电路的整体结构对电路基本变量(回路中的电压和结点上的电流)的约束关系,在学习中应把这两种不同的约束关系加以区别。(2)集总参数电路学习电路基本定律时要注意它们的适用范围:仅限于对集总参数电路的分析。所谓的集总参数电路是指:电路中的电磁能量只储存和消耗在元件上,并且各元件间是用无阻、无感的理想导线相连接,导线与电路各部分之间的电容也都可以忽略的电路。换句话说,只要电路的尺寸远小于电路中最高频率所对应的波长,不管其连接方式如何,都可以称为集总参数电路。(3)基尔霍夫定律基尔霍夫第一定律也称为结点电流定律,它解决了汇集到电路结点上各条支路电流的约束关系:对电路的任意结点而言,流入结点的电流的代数和恒等于零。此规律在规定流入结点的电流和流出结点的电流正、负取值不同时成立。基尔霍夫第二定律也称为回路电压定律,它解决了一个回路中所有元件上电压降的相互约束关系:对电路的任意回路而言,绕回路一周,所有元件上电压降的代数和恒等于电路的电压升。此规律在标定了回路绕行方向后、并规定电压降或回路电压升和绕行方向一致时取正、否则取负时成立。2、检验学习结果解析(1)你能从理解的角度上来说明什么是支路、回路、结点和网孔吗?解析:支路就是指联接在电路中两点之间的一段无分岔电路,且这段无分岔电路中可能是一个也可能是几个元件相串联,但串联各元件中通过的电流相同;回路是指电路中的任何一个闭合路径;三条或三条以上支路的汇集点称为结点;网孔则是平面电路图上内部不包含支路的闭合路径。(2)你能说明欧姆定律和基尔霍夫定律在电路的约束上有什么不同吗?解析:欧姆定律反映的是线性电阻元件特性对元件本身电压、电流的约束;基尔霍夫定律反映的是元件之间联接时给支路上电压与电流造成的约束。因此,在利用欧姆定律时,我们只需考虑元件本身的特点而不必要考虑元件之间的关系;当我们利用基尔霍夫定律时,我们考虑的则是元件之间的联系或电路的整体结构,不需要考虑元件本身的特性。(3)在应用KCL定律解题时,为什么要首先约定流入、流出结点的电流的参考方向?计算结果电流为负值说明了什么问题?解析:应用KCL定律解题时,首先假定和标示出汇集到结点上的各支路电流的参考方向,才能根据这些参考方向确定电流方程中各电流前面的正、负号;计算结果电流为负值,则说明电路图上标示的电流参考方向与该电流的实际方向相反。(4)应用KCL和KVL定律解题时,为什么要在电路图上先标示出电流的参考方向及事先给出回路中的参考绕行方向?解析:在电路图上事先标示出电流的参考方向及事先给出回路中的参考绕行方向是为了给列写的方程式提供其中各项的正、负取值。(5)KCL和KVL的推广应用你是如何理解和掌握的?解析:KCL的推广首先要掌握电路中哪些部分可以做为广义结点,KVL的推广则要掌握住电路中哪些部分可以做为假想回路。其余略。1.4 电压源和电流源 1、学习指导(1)理想电压源理想电压源简称电压源,由于它向外供出的电压值恒定,因此也称为恒压源。注意恒压源上通过的电流值是由它和外电路共同决定的。另外恒压源属于无穷大功率源,实际中不存在。(2)理想电流源理想电流源简称电流源,由于它向外供出的电流值恒定,也常称为恒流源。注意恒流源两端的电压是由它和外电路共同决定的。理想电流源也是无穷大功率源。学习时应掌握两种理想电源的基本性质和特点,分析时可借助伏安特性将两种电源进行对比,从而加深理解。(3)两种电源模型在认识了理想电源的基础上,找出实际电源与理想电源之间的区别与联系。实际电压源总是存在内阻的,而我们希望电压源的内阻越小越好,这样向外电路提供的电压值就会基本稳定,当实际电源的内阻等于0时就成为理想电压源。实际电流源的内阻总是有限值,而我们希望实际当中电流源的内阻越大越好,这样它输出的电流就越稳定,当实际电流源的内阻无穷大时就成为理想电流源。2、检验学习结果解析(1)理想电压源和理想电流源各有何特点?它们与实际电源的区别主要在哪里?解析:实际电压源总是存在内阻的,在电路分析中实际电压源是用一个理想电压源和一个电阻元件的串联组合来表征的。因此电源内阻越大分压越多,对外供出的电压就越小。我们总是希望实际电压源的内阻越小越好,当内阻为零时就成为理想电压源。理想电压源由于不存在内阻上的分压问题,因此输出的电压值恒定,但通过理想电压源的电流则由它和外电路共同决定;实际的电流源也总是存在内阻的,实际电流源一般用一个理想电流源和一个电阻元件相并联作为它的电路模型,并联电阻可以分流,因此电源内阻越小分流就越多,对外供出的电流就越小。我们希望实际电流源的内阻越大越好,当实际电流源的内阻为无穷大时,就成为一个理想的电流源。理想电流源由于内阻无穷大而不存在分流问题,因此输出的电流值恒定,但理想电流源两端电压则要由它和外电路共同决定。(2)碳精送话器的电阻随声音的强弱变化,当电阻阻值由300Ω变至200Ω时,假设由3V的理想电压源对它供电,电流变化多少?解析:送入碳精送话器中的声音越强,其电阻越小,电流就越大,当电阻分别为300Ω、200Ω时,电流分别为 A和 A。由计算结果表明,在3V理想电压源对它供电的情况下,电流在0.01A~0.015A之间变化。图1.13 实际电源的两种电路模型(a)电压源模型Ri+US-RUIS(b)电流源模型(3)实际电源的电路模型如图1.13(a)所示,已知US=20V,负载电阻RL=50Ω,当电源内阻分别为0.2Ω和30Ω时,流过负载的电流各为多少?由计算结果可说明什么问题?解析:当RU′=0.2Ω时, A; 当RU″=30Ω时, A。由计算结果可知,实际电压源的内阻越小越好。内阻太大时,电源内阻上分压过多,致使对外供出的电压过低,从而造成电源利用率不充分。(4)当电流源内阻很小时,对电路有何影响?解析:电流源的内阻和负载是并联关系,并联可以分流。因此当电流源内阻较小时,它分配到内阻上的电流就会较大,从而造成分配给外电路负载的电流相应较小,由此不仅使电源的利用率太低,还会造成内阻过热而不利于电源。1.5 电路的等效变换 1、学习指导(1)电阻等效本章初步接触到了电路 “等效” 的问题,电路等效是贯穿电路分析基础全课程的一条主线。学习时应深刻领会电路的“等效”概念:等效是指对等效变换之外的电路部分效果相同,对等效变换的电路部分效果一般不相同。电阻等效关键在于正确找结点,确定各电阻之间的串并联关系或Y或Δ关系。(2)电源之间的等效变换两种理想电源之间是没有等效而言的,因为它们是无穷大功率源。而两种实际模型之间是可以等效互换的。在等效互换的过程中一定注意:电源模型连接的端钮位置不能挪动,连接在两个电路端钮上的电压源模型变换为电流源模型时(或电流源模型变换为电压源模型时),电源的内阻不变,只是电流源的数值等于电压源的数值除以其内阻(或电压源的数值等于电流源的数值乘以其内阻)。2、检验学习结果解析(1)图1.18(a)所示电路中,设US1=2V,US2=4V,RU1= RU2= R=2Ω。求图(c)电路中的理想电流源、图(d)中的理想电压源发出的功率,再分别求出两等效电路中负载R上吸收的功率。根据计算结果,你能得出什么样的结论? 解析:首先把图(a)电路中的两个电压源模型变换为图(b)中的两个电流源模型,有 A, A RI1= RI2= RU1=2Ω因此,图(c)中的电流源模型和图(d)中的电压源模型为 IS= IS1+ IS2=1+2=3A, RI= RI1∥RI2=2∥2=1Ω US= IS×RI=3×1=3V RU= RI=1Ω求出图(c)中端电压UAB和图(d)中电流I UAB=IS×(RI∥R)=3×(1∥2)=2V A所以,图(c)电路中理想电流源发出的功率为 PI发=IS×UAB=3×2=6W电阻R上吸收的功率为 W图(d)中的理想电压源发出的功率为 PU发=I×US=1×3=3W

看了百度文库中2013年的考卷,模拟电路、数字电路、电路分析(电压源、电流源之类)都有。应该属于非电子类专业的基础教材,不难。自己看书应该可以,只是工科是实践的学科,实验课非上不可!纸上谈兵学不会的。

计算机自考大专科目:线性代数、电子技术基础(三)、毛泽东思想、邓小平理论和‘三个代表’重要思想概论、高等数学(工专)、大学语文、英语(一)、思想道德修养与法律基础、计算机应用技术(笔试+实践考核);计算机组成原理、微型计算机及接口技术(笔试+实践考核)、数据结构导论、操作系统概论、高级语言程序设计(一)(笔试+实践考核)、数据库及其应用(笔试+实践考核)、计算机网络技术。

自考报名条件

1、中华人民共和国公民,不受性别、年龄、民族、种族和已受教育程度的限制,均可按省教育考试院规定的时间和地点报名参加高等教育自学考试。

2、已公布停考的专业,仅限在籍考生按有关文件规定报考。

3、考生报考自学考试本科层次专业,申请毕业时须通过“前置学历”认证。如果不能提供专科或以上学历证书是无法办理自考本科毕业的。

微积分和线性代数微积分(Calculus)是高等数学中研究函数的微分(Differentiation)、积分(Integration)以及有关概念和应用的数学分支。它是数学的一个基础学科。内容主要包括极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。线性代数是代数学的一个分支,主要处理线性关系问题。线性关系意即数学对象之间的关系是以一次形式来表达的。例如,在解析几何里,平面上直线的方程是二元一次方程;空间平面的方程是三元一次方程,而空间直线视为两个平面相交,由两个三元一次方程所组成的方程组来表示。含有 n个未知量的一次方程称为线性方程。关于变量是一次的函数称为线性函数。线性关系问题简称线性问题。解线性方程组的问题是最简单的线性问题。

自考电子技术专业学哪些

自考电子信息工程专业主要学《信号与系统》、《电路分析》、《电子技术基础》、《高频电子技术》、《电子测量技术》、《模拟电路基础》、《电磁场与电磁波技术》、《RFID原理及应用》、《自动检测技术》、《计算机网络》、《传感与检测技术》、《网络与办公自动化技术》、《单片机原理及应用》、《数字信号与信息处理》、《ARM嵌入式系统》等。 自考毕业申请条件 1、考完本专业考试计划所规定的理论课程且考试成绩合格。 2、完成该专业所规定的实践性环节课程考核,并取得合格成绩。 3、思想品德经鉴定符合要求。 4、办理本科毕业证书者,必须具有国家承认学历的专科及以上毕业证书。 自考报名条件 1、凡具有本省正式户籍的公民,不受年龄、职业、学历的限制,均可就近报名并参加考试。外省在我省工作学习的人员,也可就近报名参加考试。 2、经国家教育部正式批准或备案的各类高等学校的专科毕业生,可直接申请报考本科段(独立本科段)。 3、考生专科(基础科段)、本科段(独立本科段)可同时兼报,但在领取本科毕业证书前必须先获取专科毕业证书。 4、实践性学习环节考核、毕业论文、毕业设计、毕业考核等,须按规定在本专业涉及实践课程理论考试全部合格后才能报考。 5、提倡在职人员按照学用一致、理论与实践相结合的原则选择报考专业。对某些行业性较强的专业(如公安管理、医学类专业等)将根据专业考试计划的要求限制报考对象。自考/成考有疑问、不知道如何总结自考/成考考点内容、不清楚自考/成考报名当地政策,点击底部咨询官网,免费领取复习资料:

自考应用电子技术本科课程有:思想道德修养与法律基础、毛泽东思想和中国特色社会主义理论体系概论、英语(一)、高等数学(工专)、线性代数、电子测量、电路分析基础、模拟电子技术基础、数字电路、数字电路(实)、非线性电子电路、微型计算机原理及应用、计算机基础与程序设计、电视原理、电视原理(实)电子技术课程设计、电子技术课程实验(实)、法学概论。自考应用电子技术专科课程有:数字电路、数字电路(实践)、线性电子电路(实践)、高频电子线路(实践)、低频电子线路、低频电子线路(实践)、思想品德修养与法律基础、电路基础、电路基础(实践)、电磁场、微波与天线、有线电视技术与卫星接收、微型计算机原理及应用、微型计算机原理及应用(实践)、办公自动化设备、数据通信技术、单片机原理及应用、单片机原理及应用(实践)、电子测量、电子测量(实践)、高等数学(工专)、高频电子线路、计算机基础与程序设计、计算机应用基础、线性代数、毛泽东思想和中国特色社会主义理论体系概论、线性电子电路、移动通信原理与应用、应用数学、英语(一)、大学语文、计算机基础与程序设计(实践)。自考/专升本有疑问、不知道自考/专升本考点内容、不清楚当地自考/专升本考试政策,点击底部咨询官网,免费获取个人学历提升方案:

自学考试有电子信息工程专业。

本专业主要研究信息的获取与处理、电子设备与信息系统的设计与应用等,从而进行各类电子设备和信息系统的研究、设计、制造、应用和开发等。例如:手机和有线电视的信号传输,雷达、导航仪等电子设备的设计制造,广播、电话所使用的无线通信系统的研发设计等。

本专业主要学《信号与系统》、《电路分析》、《电子技术基础》、《高频电子技术》、《电子测量技术》、《模拟电路基础》、《电磁场与电磁波技术》、《RFID原理及应用》、《自动检测技术》、《计算机网络》、《传感与检测技术》、《网络与办公自动化技术》、《单片机原理及应用》、《数字信号与信息处理》、《ARM嵌入式系统》等。

免费领取自考学习资料、知识地图:

  • 索引序列
  • 自考电子技术必考哪些
  • 电子电路eda技术自考必备
  • 自考电子技术有哪些
  • 电子技术基础三自考必背
  • 自考电子技术专业学哪些
  • 返回顶部